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ABSTRACT

In this paper wv examinesthe concept in solar physics that has-come

t-6b6 known as A'loss of equilibrium" 'in which a sequence of force-free

magnetic fields, said to represent a possible quasi-static evolution of solar

magnetic fields, reaches a critical configuration beyond which no

acceptable solution of the pr scribed form exists. This concept has- been,

used to explain eruptive phenomena ranging from solar flares to coronal

mass ejections. d s certain sequences of force-free

configurations that are. exhibit a loss of equilibrium, and-w9 argue-f

that the concept is devoid of physical significance since each sequence is

defined in swuca way that idoes not respresent an acceptable thought

experiment." For example, the sequence may be defined in terms of a

global constraint on the magnetic field, rather than simply a reasonable

constraint on the boundary conditions, or the evolution of the sequence may

require the creation of magnetic flux that is not connected to the

photosphere and is not present in the original configuration. The global

constraints typically occur in using the so-called "generating function"

method. We propose tharan acceptable thought experiment isto specify the

field configuration in terms of photospheric boundary conditions

comprising the normal component of the field and the field-line

connectivity. WA consider a magnetic-field sequence that, when described

in terms of a generating function, exhibits a loss of equilibrium and show

that, when one instead defines the sequence in terms of the corresponding

boundary conditions, the sequence is well behaved.
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I. INTRODUCTION

Many phenomena that fall under the general heading of "solar

activity" are believed to involve the sudden release of stored free magnetic

energy. Such phenomena include flares, prominence eruptions, coronal

mass ejections, and possibly also surges and sprays. Since these

phenomena appear to involve only processes occurring above the

photosphere, and since the photosphere is comparatively massive and is

reasonably highly conducting, there is good reason to believe that the

distribution of magnetic flux at the photospheric level is not changed by the

activity. Hence the only energy that can be derived from the magnetic field,

referred to as the "free" magnetic energy, is that which is due to currents

distributed in the region above the photosphere that is predominantly the

corona.

In the corona, the density is sufficiently low that for many

configurations one may neglect the effects of the pressure gradient and the

gravitational force of the material trapped in the magnetic field. In these

circumstances, the field will to good approximation be in a "force-free" state

for which the Lorentz force is zero, i.e.,

jxB= . (1.1)

Since this force is zero only if the current is parallel to the magnetic field,

we see that, for a force-free field,

j(x) = K(x)B(x) . (1.2)

______.. ...... __
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Since j and B are both divergenceless, it follows that

B.VK=0, (1.3)

and therefore that K is constant along any field line.

If K is assumed to be constant throughout space, then equation (1.2)

leads to the linear equation

VxB = 41KB, (1.4)

determining B(x). However, this assumption is very restrictive so that

there are strong reasons for seeking solutions of the nonlinear equation

(VxB)xB = 0. (1.5)

Procedures have been developed to calculate such solutions by numerical

methods (see, for instance, Sturrock and Woodbury 1967; Sakurai 1979;

Yang, Sturrock, and Antiochos 1986; Craig and Sneyd 1986; and

Zwingmann 1987). In addition, a certain procedure--that we refer to as the

"generating function" procedure--has been developed and studied

extensively for cases involving translational symmetry. See for instance the

review articles by Birn and Schindler (1981) and Low (1982) and references

cited therein. This method has led to the concept of "loss of equilibrium,"

that is the subject of this article.



5

Ii. THE GENERATI1.. FUNCTION METHOD

We consider a magnetic-field configuration that is uniform in the z-

direction of Cartesian coordinates x, y, z. Since V.B 0, we see that the

magnetic field may be expressed as

DA DA

.a(2.1)

We then find that equation (1.5) is satisfied if

VBz × VA = 0, (2.2)

which implies that Bz is expressible as a function of A, and if

2 dBZ
dA 

(2.3)

So far, no assumptions have been made about the magnetic field except that

it is force free and that it has translational symmetry in the z-direction.

At this point, we note that it is possible to define a family of solutions

of equation (2.3) by assuming that

Bz = XF(A) (2.4)

or, equivalently,

dI IBX f(A),
d 2(2.5)

• I I l i )I i • l i I l ' l l• I ' m . . .
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where

f(A) = F(A) F'(A) (2.6)

(Some authors use X rather than X2 in equation [2.5]). In terms of the

generating function f(A), equation (2.3) now takes the form

2 2
V A = -; f(A). (2.7)

In any specific problem, the magnetic field is determined not only by

the appropriate "field equation," but also by the boundary conditions. Since

we are discussing problems of solar activity, it is appropriate to consider the

plane y = 0 as the "photosphere" and to consider boundary conditions on

that plane. If we were dealing with a potential field, it would be sufficient to

specify By(x,0). However, specifying the normal value of the magnetic field

is not. a sufficient boundary condition to determine a force-free field. From

a physical point of view, the appropriate choice is to specify the normal

value of magnetic field and the magnetic connectivity. In the present

situation, this amounts to specifying the distance in the z-direction between

the two end points of each field line.

From a mathematical point of view, these conditions can be specified

by describing the magnetic field in terms of Clebsch variables,

B =VaxVP, (2.8)

and adopting the form
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a = a(x,y), 3 = z - y(x,y). (2.9)

We then have

aa a ba ay baby
Bx = Da-- By= -D, Bz= Da 0,y+D

ay ax ax Dy ax (2.10)

showing that a and A are identical. Since B is divergenceless, a and 13 are

constant along any field line. Hence y measures the displacement of any

field line in the z-direction. Specifying a and y as functions of x in the plane

y = 0 therefore specifies both the normal value of the magnetic field and the

connectivity at that plane. This is the approach that has been taken by

Sturrock and Woodbury (1967), Barnes and Sturrock (1972), Yang, Sturrock,

and Antiochos (1986), and Klimchuk, Sturrock, and Yang (1988).

In the generating-function approach, on the other hand, the

boundary conditions are not specified independently of the field equation.

The procedure adopted is to specify A(x,0) at the photosphere and to assume

a form for f(A); then to find a solution of equation (2.7); and, finally, to

deduce the connectivity of the field from the solution. The connectivity is

found by noting that

dz ds

Bz  IB _1  (2.11)

where B± is the projection of the magnetic field vector into the x-y plane.

The total displacement of the field line in the z-direction is then given by
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Z= i ds,
(2.12)

where the integral is taken along the projection of a field line in the x-y

plane, that is to say, along a curve A = constant.

The case X = 0 always corresponds to a potential field, for which B. =

0 and Z = 0. As . is increased from zero, B, increases and Z increases. As

long as the field remains well behaved, one can place a simple physical

interpretation on the sequence of solutions that is developed by varying X.

One can say that each field configuration represents the appropriate force-

free field for the normal magnetic field specified by A(x,0) and for the

connectivity determined, for each solution, by equation (2.12).

The important question to be addressed is the following. If we find

that the solutions of equation (2.7) are well behaved only for a finite range of

X, say 0 < X < X*, does the limiting state X = X* have some physical

significance and, if so, what is it?

III. "LOSS OF EQUILIBRIUM"

In the review articles referred to in Section I, and in a number of

articles quoted in those review articles, the authors take the position that

the existence of a limit to the sequence of solutions of equation (2.7) does

have physical significance. For instance, Birn and Schindler (1981) state

that the critical points X = X* "represent the onset points of eruptive

phenomena such as solar flares, since no neighbouring equilibrium state

could be achieved if . was forced to exceed the critical value .*." Similarly,

Low (1982) asserts that "the abrupt termination of a sequ-nce of force-free

fields" that occurs at the critical point X = X* may result in "a transition to a
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dynamical state" and suggests that this may explain "how a solar magnetic

field would occasionally break into a flare or other eruptions." In yet

another article, Birn, Goldstein and Schindler (1978) point out that

"Schindler (1976) argued that a system driven into a situation, where a

static state is no more possible, should become dynamic and interpreted the

point X = X* as the onset of an eruptive phenomenon such as a solar flare."

On the other hand, such an interpretation of the calculations has

been called into question by other authors. For instance, Hagyard and

Rabin (1986) state, "In terms of the sequence of equilibria parametrized by

X, it makes no sense to speak of solutions with X > Xcrit. Physically, the

question must be whether the system can continue to evolve smoothly

through some sequence of force-free states, whatever their mathematical

origin." Priest and Milne (1980) state, "The non-existence of solutions for X

> Xmax is therefore no evidence for the onset of instability, since it is the

shear d(x) that must be prescribed rather than f(A)."

As a specific example of a generating-function model, we consider

the case discussed originally by Low (1977) and later by Birn, Goldstein, and

Schindler (1978) and Priest and Milne (1980). In our notation, the

generating function is given by

f(A) = -k2 exp(-2A) , (3.1)

corresponding to the following global constraint on the B, component of the

field:

BIA) = XF(A) = Xk exp(-A) (3.2)
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The boundary conditions on the plane y = 0 are

A(x,0) = In(I + k2x2), (3.3)

and above the plane, at large distances from the origin, it is assumed that

(2+ -12 o, A(x,y) -.)lxk2x2 +(1 + ky).2] (3.4)

Low finds that the solution of equation (2.6), subject to the boundary

conditions (3.3) and (3.4) is

A(x,y) =I I+ k2x 2 + 2  2y +) k 2 Y2j

1+ g/ (3.5)

where ), and g are related by

2

+ g (3.6)

It may be noted that A(x,y) given by equation (3.5) in fact does not satisfy the

boundary condition (3.4) unless 1i = 0.

Low considers the sequence of magnetic-field configurations formed

by allowing gi to increase from 0 to -c. Then X increases from 0 to a

maximum of 2 (when g = 1) and then decreases back down to 0. For 0 < g <

1, the magnetic-field configuration is that of a simple arcade in which the

distribution of footpoints on the photosphere is given by
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2

1 g J (3 .7 )

For gx > 1, the magnetic field configuration is no longer that of a simple

arcade. It contains a flux tube that runs above and parallel to the

photosphere, that we here refer to as "floating flux." The distribution of

footpoints is now given by'

2g x g -2-2
kz= 7E - arcsin + k2 X kx

+ 2 x
(3.8)

Low takes the position that the creation of floating flux is forbidden by the

assumption of infinite electrical conductivity, and concludes that "field

configurations with p > 1 are not available to the evolving magnetic field."

He suggests that "the quasi-steady evolution of the force-free field ceases at

g = 1, whereupon explosive events take over."

Our approach to this problem is to consider the thought experiment

described by the mathematical model, and then to ask whether that thought

experiment is relevant to processes that can occur on the sun. Over the

range 0 < g < 1, the variation of gX may be interpreted simply as a

I There is a typographical error in equation (38) of Low (1977): the quantity
in square brackets should be raised to the minus 1/2 power, not the plus 1/2
power. Also, the field lines are labeled incorrectly in Figures 1, 2, and 4 of
Low (1977) and in Figures 3, 4, and 7 of Low (1982): the correct labeling
sequence is log2, log5, log10, log17, rather than log2, log3, log4, log5. Note
that these are natural logarithms.
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displacement of the footpoints of magnetic-field lines according to equation

(3.7), leaving the normal magnetic field strength By unchanged. This is a

reasonable thought experiment that could possibly represent actual

shearing motion on both sides of a magnetic-field polarity reversal line.

On the other hand, in increasing gt beyond the value of g. = 1, we are

requiring that two separate processes take place: (a) the footpoints should

continue to move as described by equation (3.8); and (b) floating magnetic

flux should be created. The second requirement invalidates this model as a

reasonable thought experiment for solar physics. Rather than discuss the

implications of a thought experiment which (as Low agrees) does not make

physical sense, we hold that the appropriate course is to find a thought

experiment that does make sense.

The thought experiment that does make sense has been alluded to

already and has been noted in the literature by several authors. Jockers

(1978) refers to the generating-function calculations as "a first step towards

solving the more difficult problem of prescribing the photospheric shear

rather than [F(A)]." Birn and Schindler (1981) state, "It ;s preferable to

prescribe the position of footpoints of field lines rather than [F(A)], the

reasons being that, in some cases, the Sun is more likely to do this

Finally, Low (1982) recommends, "It is physically more straightforward to

ask: What happens to a magnetic field if its footpoints are subject to a

prescribed displacement?" This is exactly the question that we now

address.

IV. THE MAGNFTO-FRICTIONAL METHOD

We calculate force-free magnetic field configurations using a

numerical technique known as the magneto-frictional method. It was first
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proposed by Yang, Sturrock, and Antiochos (1986) and was further

developed by Klimchuk, Sturrock, and Yang (1988). Essentially, it is a

relaxation technique by which an initial guess at the field configuration

relaxes to a force-free state subject to the constraint that the footpoints

remain fixed at the photosphere. Quasi-static evolutionary sequences are

then studied by varying the footpoint positions from one model calculation to

the next.

The field is described in terms of Clebsch variables [equation (2.8)]

and photospheric boundary conditions are specified by the distributions of a

and y at the y = 0 plane. There is no assumption made about the functional

dependence of B, upon a, as there is in the generating function approach.

Since we wish to address the model of Low (1977), we take a(x,0) to have the

form of equation (3.2) and take -Kx,O) to have the form of either equation (3.7)

or (3.8), depending on the value of g. For simplicity, we assume k = 1. In

Figure 1 we have plotted the shear function y(x,0) for several different

values of R.

The relaxation of the field is governed by the equations

-1 -1
Sa=-v F.Va, 8p=-v F-VP, (4.1)

where F is the Lorentz force and v is analogous to a coefficient of friction.

As discussed in Yang, Sturrock, and Antiochos (1986), it useful to take v

B2 . The calculations are performed on a two-dimensional grid using a

second-order finite differencing scheme. Because the field is symmetric

about the x = 0 plane, it is necessary to consider only the x >_ 0 half-space;

our computational domain thus ranges from 0-60 in both the x- and the y-

l - ]
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directions. A total of 289 x 289 grid points are spaced nonuniformly within

this domain to provide the greatest resolution near the origin, where it is

most important. The grid spacing there is only 0.11 compared with a

maximum of 0.5 at the outer boundary. Note that, because of the finite

spacing, we are unable to prescribe infinite shear at the origin, as given by

equation (3.8). We feel that this has negligible effect on the results,

however, since the width of the shear zone is trivial compared with all other

scales of the problem. The reader may also note that infinite shear would

never occur on the Sun.

Additional boundary conditions must be imposed at the remaining

three sides of the computational domain. At x = 0 we impose symmetry

boundary conditions, and at x = 60 and at y = 60 we impose the conditions on

a specified by Low (1977) (equation (3.4)]. Although these outer boundary

conditions are strictly appropriate only when gt = 0, the boundaries are

sufficiently far removed that their influence on the field should be

negligible. The outer boundary conditions on - are, at x = 60 and at y = 60,

Y(x,y)- 2= L arctanlyI2

1 +J.L (4.2)

These boundary conditions are strictly appropriate only when g. = 0 and g. =

1, but once again the discrepancy should be negligible.

Each of the model calculations is performed in four separate stages,

corresponding to grids of increasingly finer resolution. The calculations

are terminated after about 2000 iterations, at which time the average angle

between the current and magnetic field vectors (weighted by the product of



15

the vector magnitudes) is only a fraction of a degree. The fields are thus

force free to a very good approximation.

V. MODEL RESULTS

The results of six of our model calculations, corresponding to g. = 0.0,

0.5, 1.0, 1.5, 2.0, and 2.5, are shown in Figure 2. The first three cases are

essentially identical to the analytical solutions of Low (1977), given by

equation (3.5). Slight differences are due in part to the finite difference

nature of the numerical solutions. For example, the magnetic-field vectors

are misaligned by about 0.10, on average, for the g. = 0.0 case and by 1.5*, on

average, for the g- = 0.5 and g- = 1.0 cases. Such good agreement gives us

confidence in our results.

On the other hand, the numerical solutions for the three cases with p.

> 1.0 are fundamentally different from the solutions of Low. Whereas

Low's solutions show the appearance of floating flux, its quantity

increasing with pi, the numerical solutions maintain the character of a

simple arcade. This difference is made clear in Figure 3, where we have

plotted both solutions together for the "supercritical" case 11 = 2.5.

The sequence of force-free fields in Figure 2 is fully consistent with

the assumption of infinite electrical conductivity and therefore represents a

valid thought experiment for the quasi-static evolution of magnetic fields on

the Sun. It is interesting to note that as g increases from 0.0 the field begins

to inflate, but at larger values of gt the trend reverses and the field begins to

depress. We can understand this behavior in terms of the shear profiles

shown in Figure 1. As p increases from 0.0 to 1.0, the shearing

displacement increases everywhere along the arcade. Beyond p. = 1.0,

however, the shearing displacement decreases in all but the innermost
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region. Since greater displacement is associated with greater magnetic

pressure, due to the enhancement of B., we would expect this behavior of

the magnetic field.

VI. DISCUSSION

We have discussed and compared two methods for calculating

sequences of force-free magnetic fields of translational symmetry: one is to

use a generating-function description, which greatly simplifies the

problem, and the other is to specify connectivity boundary conditions, a

procedure that requires numerical solution. We have demonstrated that

these two methods can produce fundamentally different results, even when

the connectivity is the same. In the generating-function sequence of Low

(1977), the magnetic field changes topology at the maximum value of the

parameter X (behavior that had led to the conjecture of a catastrophic loss of

equilibrium), but in the corresponding numerical solution constrained only

by boundary conditions, the field evolves smoothly and uneventfully beyond

the critical point. This difference is due to the additional global constraint

that the generating function places on the field, namely the dependence of

B z upon A given by equation (3.2). We have argued that this is an

unacceptable constraint to adopt in modeling solar magnetic fields, and

that, in consequence, the generating-function model does not represent a

valid thought experiment.

Note that it is possible to think of the well behaved numerical

sequence of Figure 2 in terms of generating functions if one realizes that

the Bz(A) functional dependence changes form (not just magnitude) as the

field evolves beyond the critical point in response to the prescribed foot-point

motions. By contrast, in Low's sequence (and in all generating-function
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sequences), the form of the dependence is held constant throughout the

sequence. This difference was suggested some time ago by Priest and

Milne (1980). To the best of our knowledge, no one has shown that

physically acceptable constraints (such as acceptable boundary conditions)

would automatically lead to the global constraint adopted in generating-

function calculations, and we see no prospect that this global constraint can

be shown to be physically acceptable. We expect that subphotospheric

motions, which determine the locations of magnetic footpoints, will be

unaffected by the form of the coronal magnetic field, so there is no reason to

expect that the footpoint motions in a real solar situation will be such that

the evolving magnetic field can be described by a generating function of

constant form.

Not all generating-function sequences change topology at the

maximum value of the parameter X, as in Low's sequence. Some change

topology for X < Xmax, while others do not change topology at all (e.g.,

Jockers 1978; Birn, Goldstein, and Schindler 1978; Low 1977). It has been

suggested that X = Xmax nevertheless determines a critical state of physical

significance. For example, Birn, Goldstein, and Schindler (1978) write, "If

now the system is forced into a situation where X becomes larger than X*, a

(two-dimensional) quasi-static evolution is no longer possible. It seems

reasonable to expect that the system will assume a fast dynamic state."

As before, we argue that the above problem is not an acceptable

thought experiment. The sequence of field configurations is described in

terms of an unnacceptable global constraint on the field and, for X > X, it is

not possible to replace this unacceptable global constraint by an equivalent

acceptable constraint, such as the specification of connectivity boundary

conditions. Our numerical studies indicate that, when a problem is
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formulated in terms of physically acceptable boundary conditions, a

solution to the force-free equations can be found.

Birn, Goldstein, and Schindler (1978) have previously attempted to

interpret the Low (1977) result in terms of the connectivity of the field.

However, they conclude, "The maximum value X = ?&* corresponds to a

maximum displacement A = A* = ic / 2. This means that no equilibrium

solutions exists if the displacement of footpoints far away from the neutral

line x = 0 exceeds the critical value A*." This conclusion is incorrect. We

show in Figure 4 the results of a model calculation for which the shear

displacement has a magnitude of x for all field lines, demonstrating that

equilibrium solutions do in fact exist for A > A*.

In a recent related paper, Priest (1988) considers the simple model of

a cylindrical, bounded arcade with uniform, but different, gas pressures

within the arcade and in the outer field-free region. He shows that no

equilibrium solutions of the assumed form exist when the pressure

differential exceeds a critical value. This, he contends, "is suggestive that

the magnetic arcade loses equilibrium and erupts catastrophically."

Although the formulation of the problem does not involve a generating

function, it nevertheless places a similar global constraint on the field

(namely, that the field lines should be cylindrical in form) and therefore is a

physically unacceptable thought experiment for the Sun. It is entirely

possible that, as the pressure differential exceeds a critical value, the

magnetic field would adjust to an equilibrium configuration that is no

longer cylindrically symmetric. Priest himself points out this possibility,

but states that he has so far been unable to find the non-cylindrical

solutions.
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In another recent paper, Zwingmann (1987) has undertaken a

numerical study of magnetic and magnetohydrostatic configurations of

translational symmetry. In agreement with the approach we advocate

here, Zwingmann describes the field in terms of Clebsch variables. The

variables are not required to satisfy any global constraints other than the

appropriate field equations, and, for this reason, Zwingmann's procedure

seems basically to be physically sound. However, we do have some

reservations about the particular results that Zwingmann presents.

First, Zwingmann's boundary conditions on the upper boundary (but

not the side boundary) require the field lines to be normal to this boundary.

In our earlier work (Klimchuk, Sturrock, and Yang 1988), we required the

field lines to be parallel to both the upper and side boundaries, a choice that

is equivalent to considering the thought experiment of the evolution of a

magnetic field that is contained in a box with highly conducting walls. It is

not clear that the boundary conditions adopted by Zwingmann have any

such simple interpretation. His boundary conditions could no doubt be

achieved by an appropriate distribution of surface currents on the upper

boundary, but then it is not obvious whether the opening of field lines that

penetrate the upper boundary is due to the stresses internal to the box or to

the imposed stresses (those associated with the currents) at the surface of

the box.

As the shear increases in Zwingmann's model, more and more field

lines intersect the upper boundary, where they are hypothesized to become

open and lose their B, component. Zwingmann attributeb the fact that a

nearly force-free equilibrium sequence remains well behaved as the

footpoint shear is increased to large values to the fact that his boundary

conditions allow field lines to become open. However, we have studied
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several similar sequences, with the difference that we require all field lines

to remain closed, and find that these sequences also are well behaved even

at large values of shear (Klimchuk, Sturrock, and Yang 1988). Hence it

does not seem to be necessary to provide artificially for the opening of field

lines in order to obtain well behaved sequences of magnetic-field

configurations.

Zwingmann has also considered the effects of finite gas pressure and

finds that some equilibrium sequences, corresponding to increasing gas

pressure with fixed magnetic shear, have a "critical point" at which the

topology and the energy change abruptly. It is difficult to evaluate this

aspect of Zwingmann's article, since there is insufficient information

concerning the gas and magnetic-field sequences. It appears (a) from

Zwingmann's Figure 7, (b) from his specification of a pressure function

"which is a constant outside the range of values for cc" on the photosphere

(implying that a has a greater range in the corona than on the

photosphere), and (c) from his reference (on p. 322) to the existence of an "0-

type" neutral point, that the topology of the magnetic field changes in going

from one branch to another of the curve characterizing the solution, and

that this change involves the introduction of new flux, analogous to the

"floating flux" that appears in the configurations discussed in Section 3.

On the other hand, Zwingmann makes no explicit mention of such a

change of topology or of the introduction of additional flux. If, as it appears,

Zwingmann's sequence does indeed require the creation of new flux, then

the proposed evolution from one branch to another does not correspond to

an acceptable thought experiment.

One additional, comparatively minor, concern regarding

Zwingmann's article is that the critical points occur at what seem to us to
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be unreastically high values of the thermal pressure, corresponding to a

plasma 0 of about 10-1 compared with values of order 10- 3 inferred from

active region observations.

To summarize, we believe that loss of equilibrium in sequences of

force-free magnetic fields produced by the generating function method is an

artifact brought about by stipulating physically unacceptable global

constraints on the magnetic field. We propose that a physically acceptable

description of the field is one in which the field is governed by the basic

force-free equation and by the specification of appropriate photospheric

boundary conditions, namely, the normal field component and the field-line

connectivity. Our numerical calculations indicate that such a thought

experiment results in well-behaved evolutionary sequences that do not

exhibit any evidence of catastrophic behavior.

If our thesis is correct, that solar eruptive events cannot be explained

by the concept of loss of equilibrium that features in the articles we have

discussed, solar physicists are left with the important problem of

determining the correct explanation of these events. It seems to us most

likely that they are due to instabilities of the plasma system (Sturrock 1988).

It is possible that the instability is an MHD instability that could be analyzed

by an energy theorem (see, for instance, Bernstein 1973), but it is also

possible that the instability involves microscopic plasma processes, such as

field-line reconnection, in an essential manner. Recent numerical

calculations by Mikic, Barnes and Schnack (1988) suggest that the latter

possibility is a viable interpretation of solar eruptions.
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FIGURE CAPTIONS

Figure 1.--Shear functions showing the distribution of footpoint z-

displacements for four different values of the parameter L [from equations

(3.7) and (3.8), with k = 1].

Figure 2.--Edge-or. view of magnetic field lines for the numerical solutions

with g. = 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5. These are projections of the field lines

onto the x-y plane and correspond to contours of constant a. The contour

increment is 0.5. Note that the domain of the computions (60 x 60) is much

larger than shown.

Figure 3.--Comparison of the generating function solution (a) with the

numerical solution (b) for the case g = 2.5. Shown are contours of constant

a, corresponding to projections of field lines onto the x-y plane. The contour

values range from -0.5 to +3.5 in (a) and from +0.5 to +3.5 in (b).

Figure 4.--The numerical solution for a model in which a(x,0) is given by

equation (3.3), with k = 1, and in which y(x,0) has a constant magnitude of n

and an opposite sign on either side of x = 0. Shown are contours of constant

a ranging from +0.5 to +3.5.
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